

Welcome to Webcompat ML’s documentation!

About

Webcompat ML is the machine learning initiative with the goal to
support the process of collecting web compatibility issues.
This can vary from collecting data, building ML models, running
automation and deploying the infrastructure behind this.

	About

	Repositories

	Installation

	Elasticsearch

	Datasets
	Available datasets
	All events/issues

	Needs diagnosis

	Metrics definitions

	Models
	needsdiagnosis
	Metrics
	Report

	Confusion matrix

	Usage
	Classify issue

	Train model

	Evaluate model

	Deployment
	Architecture diagram

	Technology stack

	Infrastructure as Code
	Dependencies

	About

	Examples
	Regular maintenance tasks

Indices and tables

	Index

	Search Page

About

Webcompat ML is the machine learning initiative with the goal to
support the process of collecting web compatibility issues.
This can vary from collecting data, building ML models, running
automation and deploying the infrastructure behind this.

Repositories

All of our current codebase is hosted on github in the following repositories

	ML models

	mozilla/webcompat-ml [https://github.com/mozilla/webcompat-ml]

	Deployment / Infrastructure as Code

	mozilla/webcompat-ml-deploy [https://github.com/mozilla/webcompat-ml-deploy]

	Documentation

	mozilla/webcompat-ml-docs [https://github.com/mozilla/webcompat-ml-docs]

	Search

	mozilla/webcompat-search [https://github.com/mozilla/webcompat-search]

Installation

webcompat-ml is distributed as a python package. Here are the steps to install it:

$ git clone https://github.com/mozilla/webcompat-ml
$ cd webcompat-ml
$ python -m venv env
$. env/bin/activate
$ pip install .

Elasticsearch

Currently our source of truth for data related to webcompat ML is our Elasticsearch database.
It’s purpose is both to allow the webcompat team query and visualize webcompat data,
but also to be a source for building the model datasets.

The indexing of new data is handled by a cron-job that fetches new issues and events using
the GitHub API.

The Kibana web UI is available here [https://webcompat-kibana.herokuapp.com/] and is secured
using Mozilla IAM.

For more information: mozilla/webcompat-search [https://github.com/mozilla/webcompat-search]

Datasets

Our dataset is based in the webcompat [https://webcompat.com] GitHub issues submitted on webcompat/web-bugs [https://github.com/webcompat/web-bugs].
In order to build the dataset we used the GitHub API and specifically the following endpoints:

	List issues for a repository [https://developer.github.com/v3/issues/#list-issues-for-a-repository]

	Get a single issue [https://developer.github.com/v3/issues/#get-a-single-issue]

	List events for an issue [https://developer.github.com/v3/issues/events/#list-events-for-an-issue]

Datasets are distributed in CSV format in the same repository with the rest of the codebase as Git-LFS objects
under /datasets [https://github.com/mozilla/webcompat-ml/tree/master/datasets].

Available datasets

All events/issues

See also

	datasets/all-issues-events.csv [https://github.com/mozilla/webcompat-ml/blob/master/datasets/all-issues-events.csv]

This dataset includes all the issue-related historic data available in GitHub. It combines all the issue data available from
the API combined with all the events from each issue. This allows us to go through the lifecycle of each issue and extract features.

Needs diagnosis

See also

	datasets/needsdiagnosis-balanced-original-titles.csv [https://github.com/mozilla/webcompat-ml/blob/master/datasets/needsdiagnosis-balanced-original-titles.csv]

	datasets/needsdiagnosis-full-original-titles.csv [https://github.com/mozilla/webcompat-ml/blob/master/datasets/needsdiagnosis-full-original-titles.csv]

This dataset is used to train the needsdiagnosis model. Based on All events/issues we select all the closed issues and we extract the needsdiagnosis feature
based on their events. An issue marked as needsdiagnosis is an issue that through its lifecycle (issue events) reached the needsdiagnosis milestone.

Because of the nature of the webcompat issues, the data is unbalanced and have much more data points for needsdiagnosis = False. Trying to factor this in
our model we tried 2 different approaches. The one was to use all the data we have and the other was to balance the entry points so he wave the same number of
needsdiagnosis = True and needsdiagnosis = False entries.

While going through the data, we noticed an inflation in our metrics which looked suspicious. It turned out that some of the titles get changed as part of the
triaging process which hinted that needsdiagnosis target. In order to fix that we went through the events and extracted the original titles.

The metrics for the ML model gave more balanced results for the balanced dataset but since we are trying to tackle the problem of having too much noise in our input
we currently use datasets/needsdiagnosis-full-original-titles.csv.

Metrics definitions

	Accuracy is the number of correct predictions made as a ratio of all predictions made.

	Precision is the number of correct positive results divided by the number of positive results predicted by the classifier.

	Recall is the number of correct positive results divided by the number of all relevant samples

	f1 is a metric that combines precision and recall (mean of the 2 numbers)

Models

needsdiagnosis

Given a set of webcompat issues, this model classifies if an untriaged issues needs to be diagnosed.

Metrics

Report

Confusion matrix

Usage

$ Usage: webcompat-ml-needsdiagnosis [OPTIONS] COMMAND [ARGS]...

Options:
 --help Show this message and exit.

Commands:
 evaluate
 predict
 train

Classify issue

Usage: webcompat-ml-needsdiagnosis predict [OPTIONS]

Options:
 --data TEXT Path to input CSV
 --model TEXT Path to binary model
 --output TEXT Predictions output
 --help Show this message and exit.

Train model

Usage: webcompat-ml-needsdiagnosis train [OPTIONS]

Options:
 --data TEXT Path to dataset CSV
 --output TEXT Path to model binary path
 --help Show this message and exit.

Evaluate model

Usage: webcompat-ml-needsdiagnosis evaluate [OPTIONS]

Options:
 --data TEXT Path to input CSV
 --help Show this message and exit.

Deployment

Architecture diagram

[image: _images/webcompat-ml-deploy.png]

Technology stack

Current deployment is using the following technologies

	Docker

	Package models and dependencies in a single container

	Distribute docker images in Docker Hub [https://hub.docker.com/r/mozillawebcompat/ml-task/tags]

	AWS

	AWS Lambda

	Handle GitHub web hooks

	AWS API Gateway

	Expose lambda handler as API

	AWS Batch

	Schedule webcompat-ml tasks

	AWS S3

	Store webcompat-ml tasks results

	GitHub API / webhooks

	Extract data to build datasets

	Consume webhook events to trigger the automation

Even though most of the services are deployed in the cloud, all the primitives can be self hosted.
The idea is that a webhook from GitHub triggers the automation and a simple HTTP API handles the request and spawns a task.

[image: _images/webcompat-ml-deploy-generic.png]

Infrastructure as Code

Dependencies

	terraform [https://www.terraform.io/]

	docker [https://docs.docker.com/install/]

	git-crypt [https://github.com/AGWA/git-crypt]

	webcompat-ml [https://github.com/mozilla/webcompat-ml]

About

All the infrastructure is managed as code and the codebase lives under
mozilla/webcompat-ml-deploy [https://github.com/johngian/webcompat-ml-deploy].

To avoid over-complicating things, terraform is maintained in the git repository encrypted
using git-crypt [https://github.com/AGWA/git-crypt].

Important

For each change maintainers should make sure that the state is also checked in the repository.
The state also leaks credentials so its important to always make sure that the state is encrypted before pushing.

All ML tasks should be described as a Dockerfile under docker/ and should have the ML model prebundled.

Examples

Regular maintenance tasks

Build the needsdiagnosis model dataset

$ webcompat-ml-needsdiagnosis build-dataset --es-url "<URL>" --es-index-name="<INDEX>" --es-doc-type="<TYPE>" --output "</path/to/dataset.csv>"

Train the needsdiagnosis model

$ webcompat-ml-needsdiagnosis train --data "</path/to/dataset.csv>" --output "</path/to/model.bin>"

Releasing a new needsdiagnosis task image

$ cd webcompat-ml-deploy/docker/needsdiagnosis
$ docker build . -t ml-task:needsdiagnosis --build-arg MODEL_PATH="</path/to/model.bin>"
$ docker tag ml-task:needsdiagnosis mozillawebcompat/ml-task:needsdiagnosis
$ docker push mozillawebcompat/ml-task:needsdiagnosis

Applying a terraform change

$ git-crypt unlock
$ terraform plan
$ terraform apply
$ git add .
$ git add terraform.tfstate
$ git add terraform.tfstate.backup
$ git commit -m '<change applied>'

Index

 _static/ajax-loader.gif

_images/webcompat-ml-deploy-generic.png
. - . - . - .
—_— —_— _—

New GH Write back
issue Simple HTTP endpoint Task container to GitHub

_images/webcompat-ml-deploy.png
New issue / event handling

e On each new webcompat issue we send a
webhook event

e Thisis handled by a lambda function in AWS
Webhook 1 HTTP request exposed by AWS API gateway

l] o thdr

o AWS API Gateway -->HTTP API proxy
o AWS Lambda --> runs a python code

New GH API Lambda snippet
issue gateway Webhook handler o AWS Lambda function

. submits an ML

i classification task in the

: queue

A4
Task
queue

v

ML / automation

¢ AWS Batch schedules the ML tasks
o Picks up tasks from the queue
o Spins off non persistent VMs
o Runs the task packaged as a
container

AWS Batch computing Task
cluster

ESclient_.____.__.

Results g
v v
« Each task after running the classification
- stores the results in JSON format
- o S3bucket
' o ES (mostly for easier analytics)
S3 Bucket GitHub API

* GitHub automation
o Add classification labels to issues
o Automatically close issues based on
confidence threshold

ES (analytics) (labels/state)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Webcompat ML’s documentation!

 		
 About

 		
 Repositories

 		
 Installation

 		
 Elasticsearch

 		
 Datasets

 		
 Available datasets

 		
 All events/issues

 		
 Needs diagnosis

 		
 Metrics definitions

 		
 Models

 		
 needsdiagnosis

 		
 Metrics

 		
 Usage

 		
 Deployment

 		
 Architecture diagram

 		
 Technology stack

 		
 Infrastructure as Code

 		
 Dependencies

 		
 About

 		
 Examples

 		
 Regular maintenance tasks

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

